Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fenhua Wang,^a* Zhanglan Qin^a and Jiangsheng Huang^b

^aCollege of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China, and ^bWenquan High School, Xianning, Hubei Province, 43700, People's Republic of China

Correspondence e-mail: wfh7931@163.com

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.045 wR factor = 0.124 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Amino-5-(2-phenyl-1,2,3-triazol-4-yl)-1,3,4-oxadiazole

In the structure of the the title compound, $C_{10}H_8N_6O$, the triazole and oxadiazole rings are almost coplanar. The oxadiazole ring participates in intermolecular $N-H\cdots N$ hydrogen bonds, forming an infinite network in the *ac* plane. $\pi-\pi$ stacking between parallel oxadiazole rings contributes to the stabilization of the crystal packing.

Received 29 November 2004 Accepted 7 April 2005 Online 16 April 2005

Comment

1,2,3-Triazole and 1,3,4-oxadiazole have been reported to exihibit a broad spectrum of biological activities (Fei *et al.*, 1999; Wang & Qin, 2004. To extend our knowledge about such compounds, the title compound (I) was prepared and its crystal structure determined (Fig. 1).

The torsion angle around the C8–C9 bond of 6.3 (3)° reveals the near coplanarity of the triazole and oxadiazole rings, while the phenyl ring is rotated by 19.6 (3)° about the C1–N2 bond. The interplanar distance of 3.220 Å between parallel oxadiazole rings suggests the existence of π - π stacking (Fig. 2; Christoph, 2000). The oxadiazole ring participates as a double donor (substituted amino group) and as a double acceptor (ring atoms N4 and N5) in intermolecular hydrogen bonds (Table 2, Fig. 2). Each molecule connects three neighbouring molecules by N6–H6A···N5 and N6–H6B···N4 interactions, generating a nine-membered ring of graph set R_3^3 (9) (Bernstein *et al.*, 1995).

Experimental

A precursor, 2-phenyl-4-formyloxotriazole, obtained as described in the literature (Raymond & Hudson, 1944), was converted to its semicarbazone *via* reaction with semicarbazide hydrochloride. The semicarbazone (0.01 mol) was reacted with Br₂ (0.57 ml), NaOAc (0.38 ml) and HOAc (12 ml) in an ice bath for 4 h. The reaction gave a mixture containing (I). The title compound was separated by recrystallization from ethanol and water (1:1 *v/v*). However, suitable crystals for data collection (m.p. 548–549 K) were obtained by evaporation of an ethanol:DMF solution (1:1). Spectroscopic analysis: ¹H NMR (DMSO, 400 MHz) 8.82 (*s*, 1 H, CH), 7.51–8.12 (*m*, 5H, C6H5) 6.43 (*s*, 2H, NH2) MS (*m*/*z*, relative intensity %): 227 (M+, 100.00), 184 (61.86), 76 (62.06); Anal. Calcd. For C₁₀H₈N₆O: C 52.63, H 3.51, N 36.84%, found C 52.80, H 3.72, N 36.98%.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Crystal data

 $\begin{array}{l} C_{10}H_8N_6O\\ M_r = 228.22\\ Monoclinic, P2_1/c\\ a = 13.616 (2) Å\\ b = 5.9421 (9) Å\\ c = 12.7479 (19) Å\\ \beta = 99.952 (3)^\circ\\ V = 1015.9 (3) Å^3\\ Z = 4 \end{array}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.996, T_{\max} = 0.996$
5611 measured reflections

Refinement

\mathbf{P} (\mathbf{r})	TT
Refinement on F ²	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.0706P)^2]$
$wR(F^2) = 0.124$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.95	$(\Delta/\sigma)_{\rm max} < 0.001$
2203 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

 $D_x = 1.492 \text{ Mg m}^{-3}$

Cell parameters from 1227

Mo K α radiation

reflections

 $\theta = 3.0-23.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

T = 292 (2) K

 $\begin{aligned} R_{\rm int} &= 0.034 \\ \theta_{\rm max} &= 27.0^\circ \end{aligned}$

 $h = -17 \rightarrow 13$

 $\begin{array}{l} k=-7 \rightarrow 7 \\ l=-16 \rightarrow 15 \end{array}$

Plate, colourless

 $0.34 \times 0.22 \times 0.04 \text{ mm}$

2203 independent reflections 1433 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

C1-N2	1.4243 (19)	C10-N6	1.3219 (19)
C8-C9	1.448 (2)	N2-N3	1.3295 (17)
C9-O1	1.3722 (18)	N4-N5	1.4095 (17)
C7-C8-C9	128.64 (16)	N6-C10-O1	117.65 (14)
N4-C9-C8	128.77 (16)	N3-N2-C1	123.07 (14)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} \text{N6}-\text{H6}A\cdots\text{N5}^{\text{i}}\\ \text{N6}-\text{H6}B\cdots\text{N4}^{\text{ii}} \end{array}$	0.86 0.86	2.14 2.14	2.977 (2) 2.991 (2)	165.9 169.2
Commentation and and (i) 1		(;;) 1		

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, -\frac{1}{2} - z$; (ii) x, 1 + y, z.

The H atoms attached to C and N atoms were placed in geometrically idealized positions with $Csp^2 - H = 0.93$ Å, and $Nsp^2 - H = 0.86$ Å and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}$.(carrier atom)

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1995); software used to prepare material for publication: *SHELXTL*.

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The molecular packing of (I), viewed along the *b* axis, illustrating the $R_3^3(9)$ ring motif. Dashed lines indicate hydrogen bonds. [Symmetry codes: (c) $1 - x, \frac{1}{2} + y, -\frac{1}{2} - z$; (d) x, 1 + y, z.]

References

- Bernstein, J., Davies, R. E. D., Shimoni, L.& Chang, N.-L. Angew. Chem. Int. Ed. Engl. (1995). 34, 1555–1573.
- Christoph, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Fei, X. N., Song, H. H., Yang, H. Zh. (1999). Chem. J. Chin. Univ. 20, 1442– 1444.
- Raymond, M. H. & Hudson, C. S. (1944). J. Am. Chem. Soc. 66, 735-737.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1995). *SMART* (version 5.0), *SAINT* (version 5.0) and *SHELXTL*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, F. H., Qin, Zh. L. (2004). Chin. J. Pestic. Sci. 6, 71-73.