Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fenhua Wang, ${ }^{\text {a }}$ Zhanglan Qin ${ }^{\text {a }}$ and Jiangsheng Huang ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China, and ${ }^{\mathbf{b}}$ Wenquan High School,
Xianning, Hubei Province, 43700, People's
Republic of China

Correspondence e-mail: wfh7931@163.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.045$
$w R$ factor $=0.124$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-5-(2-phenyl-1,2,3-triazol-4-yl)-1,3,4-oxadiazole

In the structure of the the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}$, the triazole and oxadiazole rings are almost coplanar. The oxadiazole ring participates in intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming an infinite network in the ac plane. $\pi-\pi$ stacking between parallel oxadiazole rings contributes to the stabilization of the crystal packing.

Comment

1,2,3-Triazole and 1,3,4-oxadiazole have been reported to exihibit a broad spectrum of biological activities (Fei et al., 1999; Wang \& Qin, 2004. To extend our knowledge about such compounds, the title compound (I) was prepared and its crystal structure determined (Fig. 1).

(I)

The torsion angle around the $\mathrm{C} 8-\mathrm{C} 9$ bond of $6.3(3)^{\circ}$ reveals the near coplanarity of the triazole and oxadiazole rings, while the phenyl ring is rotated by $19.6(3)^{\circ}$ about the $\mathrm{C} 1-\mathrm{N} 2$ bond. The interplanar distance of $3.220 \AA$ between parallel oxadiazole rings suggests the existence of $\pi-\pi$ stacking (Fig. 2; Christoph, 2000). The oxadiazole ring participates as a double donor (substituted amino group) and as a double acceptor (ring atoms N4 and N5) in intermolecular hydrogen bonds (Table 2, Fig. 2). Each molecule connects three neighbouring molecules by N6-H6A‥N5 and N6$\mathrm{H} 6 B \cdots \mathrm{~N} 4$ interactions, generating a nine-membered ring of graph set $R_{3}^{3}(9)$ (Bernstein et al., 1995).

Experimental

A precursor, 2-phenyl-4-formyloxotriazole, obtained as described in the literature (Raymond \& Hudson, 1944), was converted to its semicarbazone via reaction with semicarbazide hydrochloride. The semicarbazone (0.01 mol) was reacted with $\mathrm{Br}_{2}(0.57 \mathrm{ml}), \mathrm{NaOAc}$ $(0.38 \mathrm{ml})$ and HOAc $(12 \mathrm{ml})$ in an ice bath for 4 h . The reaction gave a mixture containing (I). The title compound was separated by recrystallization from ethanol and water ($1: 1 \mathrm{v} / \mathrm{v}$). However, suitable crystals for data collection (m.p. 548-549 K) were obtained by evaporation of an ethanol:DMF solution (1:1). Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz$) 8.82(s, 1 \mathrm{H}, \mathrm{CH}), 7.51-8.12(m$, $5 \mathrm{H}, \mathrm{C} 6 \mathrm{H} 5) 6.43$ ($s, 2 \mathrm{H}, \mathrm{NH} 2$) MS (m / z, relative intensity \%): 227 (M+, 100.00), 184 (61.86), 76 (62.06); Anal. Calcd. For $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}$ 52.63 , H 3.51, N 36.84%, found C 52.80 , H 3.72, N 36.98%.

Received 29 November 2004
Accepted 7 April 2005
Online 16 April 2005

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O} \\
& M_{r}=228.22 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=13.616(2) \AA \\
& b=5.9421(9) \AA \\
& c=12.7479(19) \AA \\
& \beta=99.952(3){ }^{\circ} \\
& V=1015.9(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.492 \mathrm{Mg} \mathrm{m}^{-3}$

Mo K α radiation
Cell parameters from 1227
reflections
$\theta=3.0-23.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Plate, colourless
$0.34 \times 0.22 \times 0.04 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.996, T_{\text {max }}=0.996$
5611 measured reflections
2203 independent reflections
1433 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-17 \rightarrow 13$
$k=-7 \rightarrow 7$
$l=-16 \rightarrow 15$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.124$
$S=0.95$
2203 reflections
154 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0706 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1-N2	$1.4243(19)$	C10-N6	$1.3219(19)$
C8-C9	$1.448(2)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.3295(17)$
C9-O1	$1.3722(18)$	$\mathrm{N} 4-\mathrm{N} 5$	$1.4095(17)$
C7-C8-C9	$128.64(16)$	$\mathrm{N} 6-\mathrm{C} 10-\mathrm{O} 1$	$117.65(14)$
$\mathrm{N} 4-\mathrm{C} 9-\mathrm{C} 8$	$128.77(16)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 1$	$123.07(14)$

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H6A $\cdots \mathrm{N}^{\mathrm{i}}$	0.86	2.14	$2.977(2)$	165.9
N6-H6B N^{ii}	0.86	2.14	$2.991(2)$	169.2

Symmetry codes: (i) $1-x, \frac{1}{2}+y,-\frac{1}{2}-z$; (ii) $x, 1+y, z$.
The H atoms attached to C and N atoms were placed in geometrically idealized positions with $\mathrm{C} s p^{2}-\mathrm{H}=0.93 \AA$, and $\mathrm{N} s p^{2}-\mathrm{H}=$ $0.86 \AA$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$.(carrier atom)

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1995); software used to prepare material for publication: SHELXTL.

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The molecular packing of (I), viewed along the b axis, illustrating the $R_{3}^{3}(9)$ ring motif. Dashed lines indicate hydrogen bonds. [Symmetry codes: (c) $1-x, \frac{1}{2}+y,-\frac{1}{2}-z$; (d) $x, 1+y, z$.]

References

Bernstein, J., Davies, R. E. D., Shimoni, L.\& Chang, N.-L. Angew. Chem. Int. Ed. Engl. (1995). 34, 1555-1573.
Christoph, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Fei, X. N., Song, H. H., Yang, H. Zh. (1999). Chem. J. Chin. Univ. 20, 14421444.

Raymond, M. H. \& Hudson, C. S. (1944). J. Am. Chem. Soc. 66, 735-737.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART (version 5.0), SAINT (version 5.0) and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, F. H., Qin, Zh. L. (2004). Chin. J. Pestic. Sci. 6, 71-73.

